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N E W  I N T E G R A L  R E P R E S E N T A T I O N S  O F  A N A L Y T I C A L  

S O L U T I O N S  T O  B O U N D A R Y - V A L U E  P R O B L E M S  O F  

N O N S T A T I O N A R Y  T R A N S F E R  I N  R E G I O N S  W I T H  

M O V I N G  B O U N D A R I E S  

E. M. Kartashov UDC 536.2.001 

This  article surveys  the deve lopmen t  o f  a Green func t ion  me thod  in solving boundary-value prob lems  o f  

nons ta t ionary  t rans fer  in a region with a mov ing  boundary. For a un i form law o f  boundary  d isp lacement ,  a 

mod i f i ca t ion  o f  the  thermal -po ten t ia l  m e t h o d  is suggested  that leads  to analyt ical  solutions in a n e w  

( s imp le s t )  in tegral  fo rm.  

There is a wide range of problems in consideration of which one has to come up against the necessity of 

solving boundary-value problems for nonstationary transfer equations in regions of [0, y(t) ], t >__ 0 or [y(t), oo), 

t > 0 (y(t) is a continuous function). Similar problems arise in theoretical studies of energy transfer processes 

associated with a change in the state of aggregation of a substance in the theory of strength, in the lheory of dams, 

in soil mechanics, in the thermal study of oil beds, in electrodynamic problems, in filtration problems, in vibration 

theory, in the theory of zone refinement of materials, in the kinetic theory of crystal growth, in thermal mechanics 

when studying a thermal shock, etc. [1 ]. Mathematically, boundary-value problems of transfer in a region with 

moving boundaries differ in principle from classical ones. In view of the dependence of the region boundary on 

time, classical methods for equations of mathematical physics are inapplicable to this class of problems, since within 

the framework of these methods it is impossible to coordinate a solution of a heat conduction equation with motion 

of the region boundary. The  natural way out of this situation is to develop new approaches or modify well-known 

ones for regions with moving boundaries. 

1. Green Function Method for Parabolic Equations in Noncylindrical Regions. For regions with moving 

boundaries (noncylindrical regions) the Green function method is one of the most effective approaches. This method 

presupposes the consideration beforehand of a simpler model in determining the corresponding influence function 

Ca Green function) and allows one to obtain an integral representation of analytical solutions to an extensive class 

of unsteady transfer problems, depending on the inhomogeneities in the initial statement of the problem. However, 

for noncylindrical regions specific features appear that are peculiar to the presence of moving boundaries. At first 

we dwell briefly on the method indicated for cylindrical (classical) regions. 

Let D be a finite or partially bounded convex region of change of M i x ,  y, z); S is thc piecewise smooth 

surface that bounds region D; n is the outward normal to S; f2 = (M E D, t > 0) is a cylindrical region in the phase 

space (x, y, z, t) with the base D at t -- 0; T ( M ,  t) is a temperature function that satisfies the following conditions 

of the problem: 

O T = a A T ( M , t )  + f ( M ,  t) M E  D t > 0" (1) 
Ot ' ' ' 

T (M, t) lt--o = % (M) ,  M 5 ; (2) 

OT (M, t) 
On + fl2 r (M,  t) = ~o (M,  t) , M E S , t >_ O. (3) 
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Here 

f ( M ,  t) ~ C 0 ( i~ ) ;  t.i~ 0 ( M )  E C 1 ( ~ ) ;  ~o (M, t) E C O (S • t > 0) ;  

m m 

D = D + S ,  ~ = ( M E D ,  t>_O). 

The desired solut ion is 

T ( M , t )  E C 2(Q)  CIC 0 ( Q ) ;  grad M T ( M ,  t) E C 0 ( ~ ) ;  fl~ +fl~ > 0 .  

By virtue of the  superposition principle for linear transfer problems, the integral representation for T(M, t) can be 
written in the form of [1 ] 

T ( M , t ) = f f f ~ o ( P ) G ( M , P , t , ~ ) l ~ = o d V p + a f f f  G - 
D 0 S Onp 

~np)OG t -- r dTdae + f f f f f (P, T) G (M, t, p, ~) dTdVp, (4) 
P@S 0 D 

if the corresponding Green function G(M, t, P, r) is known for the given region as a solution of a simpler problem 
for homogeneous equation (1) with homogeneous boundary conditions of the same forms as in Eq. (3): 

OG aAMG (M, t, P, 7;) M E D t > T �9 (5) 
O r -  ' ' ' 

G ( M , t , P ,  Q I t = r = O ( M , P ) ,  M E D ,  P E D ;  (6) 

OG (M, t, P, r) +f12 G ( M , t , P , T )  = 0 ,  M ~ S ,  t > z .  (7) 
fll On M 

Here 6(M, P) is the Dirac delta function. If we consider G(M, t, P, ~) a function of the point P and time r, then 
in order to f ind G, we must solve an equivalent problem for the conjugate of Eq. (5): 

OG 
0~- + a A P G ( M ' t ' P ' r ) = O '  P E D ,  r < t ;  (8) 

a ( M , t , P , r ) l r = t = 6 ( P , M  ) ,  P E D ,  M E D ;  (9) 

O G ( M ' t ' P ' r )  + f l 2 G ( M , t , P , r ) = O ,  P E S ,  z < t .  
fll Onp 

(lO) 

If the region D is bounded,  the Green function G has the form [I I 

O ( M ,  t , P , r )  = G ( M ,  t - T , P , )  = ~ qJn(M) tP n(P) 
n= 1 II qJn II z 

exp [ -  ( ~ a  ~,~)2 (t - r) ] ,  

2 where qJn(M) and  Yn are the eigenfunctions and eigenvalues of the homogeneous problem corresponding to Eqs. 
(1)-(3): 

Atp (M) + ~?YJ (M) = 0 ,  M ~ D ;  
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r ow (m) +/~zt v (M) = 0 M ~ S 
On ' " 

Here IIW,, II z is the norm square of the eigenfunctions 

2 I[ triln [[2 = f f f tl~n (M) dV M . 
D 

Now let g2 t be a noncylindrical  region, i.e., the cross section of f2 t with the plane-characteristic t = const 

-> to > 0 is the region D t with the boundary  St depending on time t. We find changes  in the statements of bound-  

ary-value problems (5)-(7) ,  (8)-(10) with re'zpect to the Green  function G(M, t, P, 7:) in the variables (M,t) and  

(P, r) (for the cylindrical regions, the formulation of the boundary  conditions remains  unchanged; equation (5) is 

replaced by conjugate equation (8)). 

We consider the region g2 t = (0 < x <_ y(t), t >_ 0), where y(t) is a cont inuously  differentiable function, and 

T(x, t) is a solution of the problem: 

OT 02T , (11) - a - - - ~ + f ( x , t ) ,  O < x < y ( t ) ,  t > 0 "  
dt Ox 

T ( x , t )  lt= 0 = ~ 0 ( x ) ,  0 < x - < y ( 0 ) ,  y (0 )  > 0 ,  (12) 

with bounda ry  conditions of the first kind 

T ( x , t )  lx___0=~ol ( t ) ,  t >--0; 

T ( x , t )  l x=y( t )=~2( t ) ,  t > ~ 0 ;  

the second kind 

OT(x, t) l 
= r ( t ) ,  t>__0; 

ox x=O 

OT(x, t) l 
=~'2(t), t>__O, 

Ox x=y(t) 

or the th i rd  kind 

(13) 

(14) 

OT(x,t) l = h  I [T (x , t )  lx=O-~Ol (t) l ,  t___ 0 ;  
Ox I x=O (15) 

OT(x, t) I = - h2 IT (x,  t) [x-~y(t) - ~~ (t) ] ,  t >_ O.  
OX [ x=y(t) 

Character is t ic  of the given problem is the presence of boundaries moving in t ime and,  consequently,  the fact that  

the funct ion G(x, t, x', ~) in view of its physical sense (a heat pulse of power Q = cp 12 ]) depends not on the 

difference (t - T), but on t and r,  since not only the action time (t - r) ,  but also the pulse onset moment  r will be 

determining factors. We present  the function G(x, t, x', ~) in the form of [3 ] 

G ( x , t , x , T )  = 1 exp ( -  ( x - - x ' )  z ]  + q (x ,  t , x , z )  = G 0 + q ,  -c< t ,  (16) 
2 ~ / ~ a ( t - T )  L 4 a ( t - ~ ) J  
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where Go is a fundamenta l  solution of homogeneous equation (11). T h e  function GO satisfies homogeneous  equation 

(11) with respect to the variables (x, t) and its conjugate equation with respect to the variables (x', r ) .  We select 

a function q that is a regular  component of Green  function (16) such tha t  the equation q'r = -aq"x'x', T < t and the 

initial condition q(x ,  t, x ' ,  7: -- t) = 0 are satisfied. For the function G(x ,  t, x' ,  3) with respect to the variables (x', 

r) we have (in conformity  with Eqs. (8) and (9)): 

OG 02G 
- a - - -~2 ,  O < x  < y ( Q ,  r < t ;  (17) 

O~ Ox 

G ( x , t , x , 7 : ) i t = t = b ( x  - x ) ,  0 < x < y ( t ) .  (18) 

Now we consider  the equality 

0 , OT T OG 
0-~ [ T ( x ' , 7 : ) G ( x , t , x , 7 : ) l  = G ~ +  ~ = a  

Integration of Eq. (19) with respect to x' ~ [0, y(z) ] yields 

Ox, 2 Ox,2) + Gf ( x ,  7:) . 
(19) 

Y ) 0 (TG)  dx'  = a G----7 - T----7 + (x' ,  r) G (x, t, x ,  T) dx  . (20) 
0 Or Ox Ox )x,=O 0 

Relation (20) is valid for  all ~ < t and therefore  can be integrated with respect to r for 0 < r < t - e, where 

> 0 is an arbi trar i ly small number  (when 0 < r < t - e, the in tegrands  in Eq. (20) are regular enough,  since the 

singularity of the function G at the point x' = x with 7: = t is e l iminated) .  We obtain: 

l - -e  t-~ Y ) O  
f dr --(rG) dx'=a f 
0 0 Or 0 

G _ _ - T  
Ox x'=y(O 

d2- - 

( ' - "  7)i t - e  OT OG dr y ' (21) - a  f G , -  T dT + f (x',T) G ( x , t , x , T ) d x ' .  
0 Ox x'=O 0 0 

Removing from the left side the operator 0/07: after  the defini te- integral  sign and passing to the limit as e --, 0, 

which gives from Eq.(18) 

limY(Te) T ' Y7 ) (x', t - e) G (x, t, x ,  7:) I~=t-,: dx  = T (x',  t) 6 (x' - x) dx' = T (x, t) , 
e--*O 0 0 

we obtain an integral formula for arbitrary solutions of Eq. (11) in a region with a moving boundary  

T (x, t) = Y ~ )  
o 

' ' ' ( c  

-< fo t x'=O 

dT + 

+ a f  G , -  T G d r +  f f f ( x , 7 : ) G ( x , t , x , r ) d T d x ' .  (22) 
0 Ox a dT: x'=y(~) 0 0 

Suppose that  in the s tatement  of the initial problem for Eq. (1 1) we assign boundary condit ions of the first 

kind (13), the second kind (14), or the third kind (15) (or mixed boundary  conditions, thus leaving the essence 

of the matter unchanged) .  By choosing a function G(x, t, x', T) that  satisfies the following boundary  conditions: 

a) for the first boundary-value  problem 
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t 

G (x, t, x ,  r) Ix'=0 = 0 ,  G (x, t, x ,  ~) I x'=y(z) = 0,  /7 < t ; (23) 

b) for the second boundary-value problem 

OG 
OX' x'=O a dz x'=y(~) 

c) for the third boundary-value problem 

(24) 

ax' - h lG = 0 ,  + h 2 = 0 ,  z < t ,  (25) 
x'  = 0  a x' =y(r)  

hen from Eq. (22) we obtain the desired integral representations for analytical solutions of T(x, t) in the form of: 
a) the first boundary-value problem 

T ( x , t )  = f [ T ( x ' , z )  G ( x , t , x , r ) l r = o d x '  + a tf T ( x ' , r )  OG 
0 o x'=O 

d r  - 

- a f 'r (x', O ~ 0 ax' dr + f  f f (x ,r )  G(x,t,x,r)drdx'; 
x' =y(z) 0 0 

b) the second boundary-value problem 

(26) 

] , 
T(x,  t) = f T ( x ' , z ' ) G ( x ,  t , x , r )  r=0dx - a f  

0 0 

t 

+ a f  
0 

o r  (x',, ~) 
Ox x' =y( r )  

OT (x',, r) 

Ox x ' = O  

dr + 

t y ( r )  , 

ar + f f / (x,  ~) c (x, t, x ,  0 arax' ; 
0 0 

(27) 

c) the third boundary-value problem 

T ( x , t ) =  f [ T ( x , v : ) G ( x , t , x , r ) l T = o d x - a f  
0 0 Ox x' =0  

+ a f o r  (x', 7:) + h2 r (x', T) G dr + f f (x', r) G (x, t, x ,  7:) d~dx' .  
0 OX x' =y(Q 0 0 

dr + 

(28) 

As is seen from Eqs. (24) and (25), the construction of the Green function G(x, t, x', T) for the second and third 
boundary-value problems (17), (18), (24) and (17), (18), (25) on the basis of the statement of the problem with 

respect to the variable (x', T) involves serious difficulties and for the majority of boundary motion laws is technically 
impracticable. If we proceed from the problem statement with respect to the variables (x, t), then the situation is 
substantially simplified. Actually, let us consider the function G(x, t, x', r) determined by the following condition: 

0G 02G (29) - a  O < x < y ( t )  t > T "  
Ot OX 2 ' ' ' 

( x , t , x , T )  lt= ~ = g 3 ( x - x ' ) ,  0 < x < y ( r ) :  (30) 

a) for the first boundary-value problem 
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Glx=O = 0 ,  t > T ;  

-Glx=y(t) = 0 ,  t > z ; 

b) for the second boundary-value  problem 

Ox 
x = 0  

= 0 ,  l > z ;  

Ox x=y(t) 
= 0 ,  l > z ;  

c) for the third boundary-value problem 

x = 0  

We will show that  G(x, t, x' ,  r) = G(x, t, x', 7:). 

First we in tegra te  the expression 

= 0 ,  t > 7 : .  

0 IG (x", 0, x ,  7:) G (x, t, x ,  0) 1 = a 
00 

(31) 

(32) 

(33) 

_ 02~ 02Gt 

with respect to x" in the interval [0, y(O) 1, where t > 0 > 7:. Taking into account the boundary conditions for G and 

G (for all the above- indica ted  types),  we obtain: 

0 y(O)__ ,, (34) 
,SO f G Gdx = 0 .  

0 

Then we integrate Eq. (34) with respect to 0 over the interval 10, t - e 1, where e > 0 is an arbitrarily small number;  

repeating the previous reasoning (just as in deriving relation (22)), we find (with e ~ 0) that 

Y(~)-G (X", O, X, Z) G (x, t, x ,  O) dx" = "G (x, t, x ,  z) . (35) 
0 

On the other  hand,  integrat ing Eq. (34) with respect to 0 over the interval IT + e, 0 I'and letting e ~ 0, we come 

to the expression: 

Y~) G (x, l, x", O) -G (x", O, x', z) dx" = -G (x, t, x', 7;) . 
o 

(36) 

A comparison between Eqs. (35) and (36) shows that G(x, t, x', ~) -- G((x,  t, x', T). 

Thus,  the funct ion G(x, t x', 7:) can be found as a solution of equivalent problems for Eqs. (17) and (29) 

with the above bounda ry  conditions (initial and boundary) ,  and in regions with moving boundaries the equivalence 

is not retained in the bounda ry  conditions in s tatements  of problems with respect to (x, t) and (x', 7:), unlike in 

classical cylindrical regions.  This circumstance caused errors in a number  of works on the construction of Green  

functions for boundary -va lue  problems of unsteady heat transfer in regions with moving boundaries; this fact 

prompted the au thor  to prepare  the present publication. 
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2. Method of  Integral Equations in Constructing a Green Function in a Region with a Uniformly Moving 

Boundary.  Any case of finding a Green  function of a corresponding boundary-value problem for a region with a 

moving boundary  is of exceptional importance, since it contains extensive information about  analytical solutions on 

the basis of integral  relations (26)-(28).  

Let us next  consider  a modification of the method of thermal potentials ( method  of integral equations) for 

constructing Green  functions in a region with a uniformly moving boundary  [0, l + vt I, t _> 0 that is of interest for 

numerous applications, such as thermomechanics [4 ] and physics of strength [5 ]. Below we propose an approach 

that leads to analytical  solutions in a new (simplest) integral form different from those known earlier for this case 

obtained by a different  method. For brevity we consider the first boundary-value problem: 

OG 02G 
- - = a - s ' - -  f , O < x < l + v t ,  t > r ;  (37) 
Ot Ox 

GIt=r 6 ( x  x' , �9 = = , = - ) 0 < x < l + v r ,  Glx=0 Glx=l+v t  0 t > T .  (38) 

Now we pass to the function q(x ,  t x ' ,  ~) by means  of Eq. (16), whence, using Eqs. (37) and (38), we have: 

Oq 02q ' ' (39) 
, - a  O < x < l o + V t  t > 0 "  

Ot Ox 2 ' ' ' 

q l c = 0 = 0 ,  0 < x < l  0;  (40) 

1 
q l x = O -  2 ~ / ~ a t  - - - - 7  ~ 4 a t )  ' ' 

exp I  ,0+v x 21 . . . . . .  , t' > 0 .  ( 4 2 )  
q I X=lo+ vt' 2 ~/-~at '  4at'  

Here t' = t - ~; lo -= l + vt. A solution of problem (39)-(42) is sought in the form of a sum of potentials 

X/aa qJ1 (r) exp q (x, t, x ,  T) . . . .  dz + 
2V'~~ 0 V~ . ' -T  4 a ( ~ - T  

V~a tP2 ('0 exp - : dT 
"F" . . . . .  

2X/-~~ 0 ~ [ f - T  4 a ( t  T) ] 
(43) 

where tPi ( t ' )and tlS2(t') are the unknown potential densities to be determined.  Expression (43) will be written in 

the space of Laplace t ransform 

,o_x) - Vr-aa exp - V~p (p) + - -  exp V-tip t-rJ 3 (V~fi-p -4- ~Z) 2 (44) 

where y = v/2~-a; qs3(t') = tP2(t ')exp (72f). Thus ,  hereafter to find the original q from Eq. (44), it is necessary to 

seek t ransforms of the unknown densities in Eq. (43) relative to q/1 (P) and ~3  [(V~ + ?)2 I. 

Satisfying boundary  conditions (41)-(42) in Eq. (43), we obtain a system of Volterra  integral equations in 

tP 1 (t') and qJ3(t'): 
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v'-Sa ~ Wl (0 
d 

2v% o W - , :  1 
i 

- -  2 - - ~  o ~ 4S~?-z-~ 
dz 

2 vr-~at ' 
exp ; ( 4 5 )  

2V% 0 ~ - 4a~ '~L- i i  "j dr +__~__~a q'3(O 2v% o v r? -T  

2 Vr-~al ' 
_ _  e x p  

_ , )2  , ] 
(1o x (s o - x )  v 

4at' 2 a  ] " 

In the transform space the system of integral equations takes the form: 

d'g -~- 

exp 

_ 1 ( x )  
W 1 (p) + exp - ~aa ~ ~3 (Vpp + y)2 = _ _ exp - v~p 

a ~ ' 

[,o ] - ~ ( ~  +~) 1 
~l(V ' - f i+7)  2 + 9 3 ( p ) = - - e x p  

a 

1 
t o - x (v~d + ~,)] 

v-S J 
o 

Elimination first of 93 (p )and  then of ~ l  (P) from the system of functional equations (47) yields: 

[,o ] 
e x p  - ~ ( p +  27) 91 ('~p + 2y) 2 -  exp Vpp W 1 (p) = 

'I I  ~ = - -  exp (V~p + 2y) - exp V~p �9 

exp 
lo 

-- ~ ( V p p  +7 )  93(V~P + 2y) 2 -  exp 

= _ 1 exp - 
a 

,o ] 
(Vpp + 7)  tP3 

~- (W + ~,) 

(p) = 

We let: 

91 (p2) =A1 (P) ; 93(p2)  = A3 (P) 

and rewrite Eqs. (48) and (49) in the following form: 

(2,0] r2,o 1 e x p  -~a -a7  A! ( p +  2 7 ) -  exp (~a-a p A1 (p) = 

1 x 2 ( l  0 - x ) 2 l  0 - x 
= - - exp p 7 - exp p a vr-s 

(2,0 / r2z~ 
exp -~a-a  y/ A3(P + 2 7 ) -  exp [ ~ a  p A3(P) = 

(46) 

(47) 

( 4 8 )  

(49) 

(50) 

(51) 
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1[ (,0-x 
= - a  exp ( Vr~-a P 

By means of substitution 

lo+x' ) ( l o + /  ~7-~ -ex.---~ ZoX ] P G-a r �9 

a i(p) = exp p2 Bi(P) ( i =  1;3) 

/ 

equations (51) and (52) are reduced to equations with constant coefficients: 

(52) 

(53) 

1 
Bl (P + 2 y ) - 3  l ( p ) = - - e x p  

(2 

2) 
- - p  X 
2 qSa ~, 

• {exp 210x 2 ,0x,] /xtt  V~a P "vr-aa y - e x p - - - ~ a - a P  ,; (54) 

1 I ,o 2) B3(p + 2 y ) - B  3(p) = - - e x p  - - p  x 
a 2 alga :, 

• {exp ( p + y )  - exp - ~ (p + y) . (55) 

It can be directly verified that the function F(p) = - ~  ~(p + bn) 16 ] is a desired particular solution of the functional 
n = 0  

equation F(p + b - F(p) = C(p), provided that this series converges. But a series of the type of ~ exp 
tz=0 

1- (10/2r (p + 2yn) 2 - d ( n ,  p) I (where d(n,  p) > 0 are linear functions with respect to n), to which the solutions 

of Eqs. (54) and (55) are reduced, converges because (10/2r > 0. Thus, the following functions will be solutions 

of Eqs. (54) and (55): 

15: [ ~o BI (P) = -- exp - -  (p + 2yn) 2 
a n=O 2 vrTa y 

2 / O - x  2( l  O - x ' )  _ x (p+  2yn) 
exp - v~a (P + 2yn) ~-a y - exp ; (56) 

I 10+ x • exp - 

- , ~  ~0 1 B 3 (p) = -- exp - -  (p + 2yn) 2 • 
a n=O 2 V~a y J 

1[  1 - - ( p + ( 2 n +  1)y) - e x p  ~ ( p + ( 2 n +  l ) y )  (57) 

Knowing "Bi(p), we first find Ai(P) from Eq. (53) and then, with allowance for Eq. (50), the desired potential 
densities relative to the transforms that enter into Eq. (44): 

_ 1 ~ 27 , 2l  o ( n +  l ) - x  
~1 (P) =-an=O ~ exp - ~ ( n +  1) I ( n +  1) l 0 - x  l -  ~ - 
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_ 1  ~] exp 
a n=0 

2lo7 2 27x' 21on + x' ] - - - ~  - -  ~ ~ ( 5 8 )  
v~a v~da Gd ) ' I i 

1 2107 2yx 
% (v~p + r )  2 = - Z e,,p - - -  (~ + l)  2 - - - ( n  + 1) - 

{ 2, 
- - a n = o e X p  - ~ ( n +  1) l ( n +  1) l  o - x  l -  

] ( 2 n +  1) l  0 + x  qPP - 

,} ( 2 n +  1) l  0 - x  vr~p . 
(59) 

Substituting Eqs. (58) and  (59) into Eq. (44) and passing to the space of original functions, we determine, with 

allowance for Eq. (16), the desired Green function G(x, t, x', z): 

1 n=+oo ( 2107 2 27x' ] 
G ( x , t , x , r )  = ~] exp [ -  n) x 

{ [ [ (60) x e x p -  T a ? a ~ ) - j  - e x p  - -~a( - t -~)  ]J ,  

where l o = l + vr; 7 = v/2v'--d. Analyzing the expression obtained, we combine the exponentials that contain n 2 in 

the exponent. Then under  the sign of the series the factor exp [-lon2(l  + vt)/a(t  - T) I appears. From this it follows 

that series (60) converges also for negative values of v provided that z < t < - ( t / v ) .  But when t -- - l / v  (v < 0), 
the prescribed region disappears.  Consequently, expression (60) can be used for any values of v. 

Now, using Eq. (26), it is possible to write an integral representation of the analytical solution of first 

boundary-value problem (11)- (13) in terms of Green function (60): 

l , t 0___G_G[ 
T ( x ,  t) = f * 0 ( x ' ) a ( x , t , x , 0 ) d x '  + a f r o  I (r) dT -- 

0 0 Ox'[ x'=O 

t O G I t l+vr , , 
-- a f 502 (T) dT+ f f f (X,  r) G (x, l, x ,  r) drdx . (61) 

0 0 x '  [ x'=l+vr 0 0 

When qbo(X) = 0, f ix ,  t) = 0, expression (61) takes the form 

, ,=+oo t v 0  ( l  + w )  n T ( x , t ) - -  1 X f x + 2 n ( l +  v 
2 ~ ,z=-oo o (t -- r) 3/2 501 (T) exp - a - 

Ix + 2n (l + vr)'l 2 

4a (t - r) 

n=+oo t [ x +  ( 2 n +  1 ) ( l +  vt~! 
d~ 1 Z f T) 3 /2  ~o 2 ('c) X 

2q---~-~ n=-oo 0 ( t -  

exp" v(t+ Ix+ 0"+ 1)<l+  )121' 
- a n ( n  + 1) - 4 a  ( l  - T) J d z ,  ( 6 2 )  X [ 

thus representing an integral relation of the new form for the first boundary-value problem of rlonstationary thermal 

conductivity in the region of [0, l + vt ], t _> 0. Expression (62) has an interesting continuation. We pass in Eq. 

(62) to the space of t ransforms (following Laplace) 
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2ln + x V~p - exp Vpp ~1 I(Vpp + 27n)21 + • e x p  

+V~p n=o -vr_aa n ( n + l )  IV~p + ( 2 n + l ) y l x  

{ I (2n+ 1) l -xx]- f iP]-exp [ - ( 2 n +  l ) l+xv~p]  } (v~P + ( 2 n +  l)V)2 (63) X exp - ~ V~a ~3 , 

where ~o3(t) = ~o2(t) exp (72t). Expression (63) can be a working formula for writing analytical solutions (in 

transforms) of first boundary-value problem (11)-(13) (when f =  ~0 = 0) in the region of [0, l + vt], t >_ 0 for a 
wide class of boundary functions (homogeneous, impulse, pulsating, periodic, etc.). From this expression.it is also 
possible to obtain immediately a representation for the Green function, if one takes into account that in this case 
~o I (t) and ~o2(t) are well-known functions (41) and (42). The practical usefulness of expression (63) lies in the fact 
that with the prescribed boundary functions the direct passage to the original functions in Eq. (63) eliminates 
prolonged intermediate calculations, as for instance, in passage from Eq. (61) to Eq. (62) (it is clear that relation 
(63) could be also obtained immediately by the previous reasoning on the basis of Eq. (43), so this is one of the 
approaches). However, with inhomogeneities present in Eqs. (11) and (12), the Green function method is 
irreplaceable. 

We illustrate the suggested considerations for the region of x >_ l + vt, t > O, where the above-stated 
approach (on the basis of Eq. (63)) becomes especially effective. Let T(x, t) be a solution of the problem: 

OT 02T  (64) - - = a  x > l + v t ,  t > O -  
Ot Ox 2 ' 

T (x, t) It=0 = 0 ,  x >-- l ; (65) 

riOT ) (66) Tdx + 3 2 r  =/3ae ( 0 ,  t _> o ; 
x= l+ vt 

IT(x,t)  l < + oo, x>_l+ vt, t > O ,  (67) 

where/31 = 0 ,  /32 = / 3 3  = 1 in the case of the first boundary-value problem;/32 = 0,/31 = r 3  = 1 in the case of the 
second boundary-value problem;/31 = 1,/32 = r3 = - h  (h is the relative coefficient of heat transfer) in the case of 
the third boundary-value problem. The function T(x, t) is sought in the form of the generalized thermal potential 

of a simple layer using the curve x = l + vt 

t 
T (x, t) - J 

2 V'-dn o 

tp(r )  exp F| ( x - l -  w)2['l 
- , d z ,  ( 6 8 )  

t ~ - ~  [ 4a (t - r) ] 

where W(t) is the unknown potential density to be found from boundary condition (66). In the space of Laplace 

transforms expression (68) has the form 

-T (x, p ) -  xfSa exp vr-fip ~ ~ (69) 

from which the operational form of the unknown density follows. Repeating the above reasoning, we find the 

following base relation for operational solution of boundary-value problem (64)-(67): 
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- -  w 

r (x, p) = o (p) (70) 

where 

1 v / 2 a  ] (x_l i ( v )  e• 

m 

o (p) = 

1 

- 1 / x  / p / a  

h 

h + x / p / a  

for the first boundary-va lue  problem;  

for the second boundary -va lue  problem;  

for the third boundary-va lue  problem.  

Passing to the  space of original functions by means of well-known rules of operational calculus 17 ], we 

obtain integral re la t ions  in a very compact form.  As, for example, in the case of the first b o u n d a r y - v a l u e  problem: 

T ( x , t ) -  1 f ~' l(~)exp - a~. 
2 ~  o ( t - 0 3 / 2  L 4 a ( t  r) J 

In order  to find an analytical  solution of the inhomogeneous heat conduction equation with the inhomogeneous 

initial condition 

OT 02T 
- -  a ~  + f ( x ,  t )  x > l + v t  t > O -  (71) 

Ot Ox 2 ' ' ' 

T ( x , t )  lt= o = ~ 0 ( x ) ,  x ~ l ,  (72) 

and boundary condi t ions  (66) and (67) ,  it is necessary first to construct the corresponding Green function G(x ,  t, 

x', r) .  By means of expression (70) we can do it with minimal calculations. Actually, according to Eq. (16), in the 

case of the third boundary-va lue  problem for the function q(x ,  t', x', z) we have: 

Oq 02q , , 
---v = a - -  x > l o +  vt t > 0 "  (73) 
Ot Ox 2 ' ' ' 

r 

q ( x , t , x , T )  l t , = o = O ,  x >  l O; (74) 

- -  = h q[x=lo+v  r - exp - 
Ox x=lo+vt,  4h  ~ (at ')  3 /2  4at '  

, t > 0 ; (75) 

I q (x,  t , x , -c) l < + ~ ,  x >_ lo + vt' , t' >_ O , (76) 

where l0 = l + vr; t' = t - z. Now, in accordance with approach (70) we separate out the function ~p(t') in boundary 

condition (75): 

(x'  - lo) - (v  + 2ah)  t' [ (lo + vt' - x ' )  2] 
~o (t') = exp . . . .  , 

4h ~ (at ' )  3 / 2  4at '  

find its representa t ion  in the form indicated in Eq. (70): 
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v + h 4~-a) VTp- 

v ] x l O v ~ p + _ ( x , _ 1 0 )  
v~a a 

and  then ,  us ing  Eq. (70),  we pass  to the  r ep resen ta t ion  for ~(x,  p, x ' ,  r)  

1 G x + x  2 ~ ~  (x lo) . 
- - -  exp . . . .  (77) 

2V~a V~p ( v r f i + h ~ a )  ~ a 

Resor t ing  to the  original  func t ions  in Eq. (77) and  taking into account  Eq. (16),  we d e t e r m i n e  the  G r e e n  func t ion  

for the th i rd  b o u n d a r y - v a l u e  p rob l em in the  region of x > l + vt, t > 0: 

{ [  x_x 2] G ( x ,  t, x ,  r)  = I exp  - + 
2 X/ha (t - T) 4a  (t - T)I 

+ exp  (x + x' - 2 (l + v[)) 2 4- _v (x'  - (l + Iff))] 

4a (t - r)  a ] 
( v ) {  v } 

- h + ~ - d a  exp  [ x + x - 2 ( l + v c ) l h + a h 2 ( t - r ) + - I x ' - ( l + v r ) l  x 
( l  

(78) 

% 
where  ~ * ( z  ) = 1 - ~ ( z ) ;  ~ ( z )  = ( 2 / v ~ - )  f exp ( - y 2 ) d y  of the Laplace  funct ion.  A s s u m i n g  tha t  in Eq. (77) h = 0, 

0 
we find the  G r e e n  funct ion for  the second  bounda ry -va lue  p rob lem 

{ [ x-x 21 G (x, t, x ,  z) = i exp  - + 
2 ~/3ra (r - r) 4a  (t - r ) ]  

+ exp  [ - (x  + x' - 2 (l + vr))z + v (x' - (l + (t - r) a -~ 

T h e  limit p a s s a g e  with ( l / h )  --- 0 in Eq. (77) leads to the G r e e n  funct ion  for  the  f i rs t  b o u n d a r y - v a l u e  p r o b l e m  

(79) 

G (x, t, x ,  ~) = 
2 ~/~a (t - r)  

exp [- (x - ;)2] _ 
4~ (t - n] 

- e xp  [ -  (x  + x' - 2 (l + ~ ) ) 2  + V (x' - (l + vQ) (t - T) a (80) 

T h e  in tegra l  r e p r e s e n t a t i o n  of the  ana ly t i ca l  solution of p rob lem (71),  (72),  (66) ,  (67) h a s  the  fo rm of 
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T (x, t) = ~ ~0  (x') G (x, t, x', O) dx' + 
l 

+ a f  1 - - -  Y2G ~o (r) dr  + f f ( x ' , r )  G (x, t , x ,  T) dTdx , (81) 
0 Ox' x'=l+vr 0 l+vr 

where Yl = 1, 72 = 0 in the case of the first boundary-va lue  problem; 71 = 0, 72 = 1 in the case of the second 

boundary-va lue  problem; 71 = 0, 72 = - h  in the case of the third boundary-va lue  problem. 

For  different b o u n d a r y  conditions the specific features  of the me thod  for  the region of ~ t  = {x E 10, y(t) ], 
t >_ 0} consist  only in solving a finite difference equation and  in passing to an  original.  This  method can be ex tended  

to o ther  regions and laws of boundary  motion. Although the approach given he re  concerns boundary-va lue  problems 

for Eqs. (64) and (71), it is also possible to consider equations of the following form 

07" = aAT  (M, t) - b2T (M, t) + v grad T (M, t) + F (M, t) 
Ot 

( 8 2 )  

since by substitution 

T ( M , t )  = U ( M , t )  exp - ~ r .  v b 2 
i = 1  

(here M -- M(Xl,  x2, x3), v --Vli + v2j + v3k (vi = consl) ,  b 2 = const, r = xl i  + x2j +.x3k) Eq. (83) is reduced  to 

the case 

OU 
Ot 

- aAV (m, t) + w (m, t ) ,  

where W ( M ,  t) is the new (known) function. 
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