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NEW INTEGRAL REPRESENTATIONS OF ANALYTICAL
SOLUTIONS TO BOUNDARY-VALUE PROBLEMS OF
NONSTATIONARY TRANSFER IN REGIONS WITH
MOVING BOUNDARIES

E. M. Kartashov UDC 536.2.001

This article surveys the development of a Green function method in solving boundary-value problems of
nonstationary transfer in a region with a moving boundary. For a uniform law of boundary displacement, a
modification of the thermal-potential method is suggested that leads to analytical solutions in a new
(simplest) integral form.

There is a wide range of problems in consideration of which one has to come up against the necessity of
solving boundary-value problems for nonstationary transfer equations in regions of [0, y(®) ], 1 = 0 or [y(D), =),
t =0 (y(® is a continuous function). Similar problems arise in theoretical studies of energy transfer processes
associated with a change in the state of aggregation of a substance in the theory of strength, in the theory of dams,
in soil mechanics, in the thermal study of oil beds, in electrodynamic problems, in filtration problems, in vibration
theory, in the theory of zone refinement of materials, in the kinetic theory of crystal growth, in thermal mechanics
when studying a thermal shock, etc. [1]. Mathematically, boundary-value problems of transfer in a region with
moving boundaries differ in principle from classical ones. In view of the dependence of the region boundary on
lime, classical methods for equations of mathematical physics are inapplicable to this class of problems, since within
the framework of these methods it is impossible to coordinate a solution of a heat conduction equation with motion
of the region boundary. The natural way out of this situation is to develop new approaches or modify well-known
ones for regions with moving boundaries.

1. Green Function Method for Parabolic Equations in Noncylindrical Regions. For regions with moving
boundaries (noncylindrical regions) the Green function method is one of the most effective approaches. This method
presupposes the consideration beforehand of a simpler model in determining the corresponding influence function
(a Green function) and allows one to obtain an integral representation of analytical solutions to an extensive class
of unsteady transfer problems, depending on the inhomogeneities in the initial statement of the problem. However,
for noncylindrical regions specific features appear that are peculiar to the presence of moving boundaries. At first
we dwell briefly on the method indicated for cylindrical (classical) regions.

Let D be a finite or partially bounded convex region of change of M(x, y, 2); S is thc piecewise smooth
surface that bounds region D; n is the outward normal to S; Q = (M € D, t > 0) is a cylindrical region in the phase
space (x, y, z, 1) with the base D att=0; T(M, 1) is a temperature function that satisfies the following conditions
of the problem:

%=aAT(M,Z)+f(M,t), MeD, t>0; (1)
T (M, )| o= Py (M), MED; (2)
ﬁlaT(;:”t +B, TM, )=p (M, 1), MES, 120. 3
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Here

F,nec®@; dyMyec @ oM, e (Sx120);
D=D+S, B=M€D,120).
The desired solution is
T(M, 1)) € CP (@) N’ (@); grady T (M, ) EC’@); 2+ >0.

By virtue of the superposition principle for linear transfer problems, the integral representation for T(M, 1) can be
written in the form of [1]

1 .
TM, )= [ @ (P)G (M, P, 1,v)],mgdVp+af Jf |G
D 0S onp
oG ! 4
- T drdop+ [ [ [ [ 7(P,T) G (M, t, P, 7) drdVp, C)
np| pes o D

if the corresponding Green function G(M, ¢, P, r) is known for the given region as a solution of a simpler problem
for homogeneous equation (1) with homogeneous boundary conditions of the same forms as in Eq. (3):

%=aAMG(M,t,P,T), MED, t>z1; )

G(M,t,P,7)|,.,=8(M,P), MED, PED; (6)

ﬁl aG Ag;lt’P’T +ﬁZG(M’tsP7T)=0’ MES’ 1>1. (7)
M

Here (M, P) is the Dirac delta function. If we consider G(M, ¢, P, t) a function of the point P and time 7, then
in order to find G, we must solve an equivalent problem for the conjugate of Eq. (5):

dG
o T aApyG (M, 1, P,1)=0, PED, 1<1; 3)
GM,t,P,1)|,_,=6(P,M), PED, MED; 9
ﬂlﬂ%rf’—ml+ﬂzcw,z,1),r)=o, PES, 1<1. (10)
P

If the region D is bounded, the Green function G has the form [1 ]

GM,t,P,0)=G(M,t—1,P) = i m%fz

exp [— (Vay) (1 -1,
n=1 ” an

where W, (M) and y,zl arc the eigenfunctions and eigenvalues of the homogeneous problem corresponding to Egs.
(-3

AW (M) + W (My=0, MED;
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s M pwan =0, mes.
Here ||W, || ? is the norm square of the eigenfunctions

“wﬂﬁ=f£fw100dnr

Now let Q; be a noncylindrical region, i.e., the cross section of €; with the plane-characteristic ¢ = const
= f9 > 0 is the region D; with the boundary S, depending on time ¢. We find changes in the statements of bound-
ary-value problems (5)-(7), (8)-(10) with respect to the Green function G(M, ¢, P, 1) in the variables (M,?) and
(P, 1) (for the cylindrical regions, the formulation of the boundary conditions remains unchanged; equation (5) is
replaced by conjugate equation (8)).

We consider the region Q;= (0 < x < y(9), t = 0), where y(¢) is a continuously differentiable function, and
T(x, t) is a solution of the problem:

2
Lol vfxn, 0<x<y@®, 1>0; (11)

ot ax
T )]g=P (), 0sx=y(0), y(0)20, (12)

with boundary conditions of the first kind

T(x’ t)\x=0=‘Pl (l)’ 1z0;

(13)
T (x, t)|x=y(t) =p, (1, t=0;
the second kind
aTa);’t =, (), 1203
( - (14)
aTax’t =p, (0, 120,
o lx=y0
or the third kind
oT(x, t
—Ja{-;—l =h1 [T(x’t)l,\':O—‘Pl(t)], tr=0;
x=0 (15)
aT(x, 1)
0x x=y(f) =~ T t)|x=y(t) —p ()], 1= 0.

Characteristic of the given problem is the presence of boundaries moving in time and, conscquently, the fact that
the function G(x, ¢, x', T) in view of its physical sense (a heat pulse of power Q = ¢po |2] depends not on the
difference (¢ — 1), but on ¢ and 7, since not only the action time (z — 7, but also the pulse onset moment 7 will be
determining factors. We present the function G(x, ¢, x, 7) in the form of [3]

2
L exp |- ETX) X, ) =Gyt a, T, (16)
2Vma(t—1) da(t—71)

Gx,t,x,1)=
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where Gy is a fundamental solution of homogeneous equation (11). The function Gy satisfies homogeneous equation
(11) with respect to the variables (x, ) and its conjugate equation with respect to the variables (x', 7). We select
a function g that is a regular component of Green function (16) such that the equation ¢, = —aq;’ > T <tand the
initial condition g(x, 1, x', T =1 = 0 are satisfied. For the function G(x, {, x', 1) with respect to the variables (x’,
7) we have (in conformity with Egs. (8) and (9)):

2

2Q:—aa—%,0<x'<y(r),'r<t; %))
o1 ax
G(x,t,x',t)lt=,=6(x'—x), O<xl<y(t). (18)
Now we consider the equality
9 : : 9T . . 9G ST %G :
5{[T(x,r)G(x,t,x,r)]:G—a—T—+T~a7=a Gax,z—T:?? +Gf(x,1). (19)

Integration of Eq. (19) with respect to x" € [0, y(x) } yields

¥(@) , = oy@ , ,
L reydx =a|cL - 7% S DG X, Ty dx (20)
0 ot dx 09X | v=0 0

Relation (20) is valid for all T < 7 and therefore can be integrated with respect to 7 for 0 < v < ¢ — ¢, where
¢ > 0 is an arbitrarily small number (when 0 < v < 1 — ¢, the integrands in Eq. (20) are regular enough, since the
singularity of the function G at the point x" = x with 7 = / is eliminated). We obtain:

t—e  y(r) , I—¢
[ & [ 26 dx =af 6L -7 dr -
0 0 It 0 ax ax x':y(f)
t—¢ . t-¢  ¥1) , , )
-a [ GG—T,—TiG—, de+ [ dr [ f(x,0)G(x, 1, x,7)dx . (21)
0 dax 0X | y'=0 0 0

Removing from the left side the operator d/dt after the definite-integral sign and passing to the limit as ¢ > 0,

which gives from Eq.(18)
¥1—&) . , () . ) ,
im [ T(x,t=-e)Gx6x, Doy pdx = [ T(x,00(x —x)dx =T (x,1),
e=>0 0 0

we obtain an integral formula for arbitrary solutions of Eq. (11) in a region with a moving boundary

¥(0) , , , 1 . .
T, )= f [Tx,0)G(x 1t x,0)kogdx —af ¢ _ 136 dr +
0 0 dax dx | vz
t oy . .
+af G—al,—T a—q—lﬂG dt+ [ [ Ff(x,7)G(x, 1, x,7)drdx . (22)
0 0x 0x a dt *'=y(7) 0 0 .

Suppose that in the statement of the initial problem for Eq. (11) we assign boundary conditions of the first
kind (13), the second kind (14), or the third kind (15) (or mixed boundary conditions, thus leaving the essence
of the matter unchanged). By choosing a function G(x, ¢, x', 7) that satisfies the following boundary conditions:

a) for the first boundary-value problem
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Gt %, D) g =0, G 6,x,0)| yoyy =0, T<1; (23)

b) for the second boundary-value problem

J
'_Q, =0, a—G,~lQG =0, 1<1; (24)
0x | x'=0 Ox adt |y=yu
¢) for the third boundary-value problem
0
G _nal =0, |G (-1 -0, r<1, 25)
0x x'=0 9x adt x'=y(1)

hen from Eq. (22) we obtain the desired integral representations for analytical solutions of T(x, © in the form of:
a) the first boundary-value problem

(Y] . . . ? .G
Tx, )= [ [T(x,0)G(x, ,x,0)Lgdx +af |T(x,7)— dr —
0 0 ax x =0
! . Ly@ . .
—af T(x,r)a—q dt+f [ f(x,7)G(x ¢, x,7)dudx ; (26)
0 ax x':y(r) 0 0
b) the second boundary-value problem
»0) , : C LT (x, D)
Ton=f [T 0650 _jd —af Aol ar+
0 = 0 dx =0
! oT !X’ T! ! y(T) ’ . . .
+af —G dt+ [ [ 7(x,1)G(x 1, x,7) drdx ; (27)
0 dax x':y(‘[) 0 0

¢) the third boundary-value problem

¥(©) . ) . t ' s
T(x,t)=f [T(x,r)G(x,t,x,T)],=0dx—-af M—hﬂ’(x,r) G dr +
0 0 ax =0
! 6Tgx, T) / Ly@ . )
+af L + T (x,7)| G de+ [ [ F(x,0)G(x 1, x, 1) drdx . (28)
0 dx x'=y(t) 0 0

As is seen from Egs. (24) and (25), the construction of the Green function G(x, ¢, x', 7) for the second and third
boundary-value problems (17), (18), (24) and (17), (18), (25) on the basis of the statement of the problem with
respect to the variable (x', ) involves serious difficulties and for the majority of boundary motion laws is technically
impracticable. If we proceed from the problem statement with respect to the variables (x, #, then the situation is
substantially simplified. Actually, let us consider the function G(x, 1, x', 7) determined by the following condition:

= 2=
E__-a——i’ 0<x<y(t), 1>1; (29)
at 0x

a(x,t,x’,r)|t=1=c§(x—x,), O<x<y(): (30)

a) for the first boundary-value problem
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5'X=0=O’ t>1;

(31)
Glimypy =0, 1>7;
b) for the second boundary-value problem
%ﬁ =0, (1>1;
* x=0
(32)
%i—; =0, t>1;
x=y(1)
¢) for the third boundary-value problem
(Z—G-——hla) :':0, 1>1;
g *=0 (33)
(%%@6) =0, 1>1.
* x=y(t)
We will show that G(x, ¢, x', 1) = G(x, 1, X, 7).
First we integrate the expression
2— 2
2 G, 605,06 Lx,0)1=a|02E-GLY
00 ox ax

with respect to x” in the interval [0, y(@) |, where 1 > 6 > 7. Taking into account the boundary conditions for G and
G (for all the above-indicated types), we obtain:

=5 [ GGdx = 0. (34)

Then we integrate Eq. (34) with respect to 8 over the interval {6,  — €], where ¢ > 0 is an arbitrarily small number;
repeating the previous reasoning (just as in deriving relation (22)), we find (with ¢ - 0) that

yo_ , . . = .
[ G(x,0,x,0)G(x, 1, x,8)dx =G (x, 1, x,1). (35)
0

On the other hand, integrating Eq. (34) with respect to 8 over the interval [t + €, 6 | and letting ¢ - 0, we come
to the expression:

y(©) w— . . — ,
fG(x,t,x,B)G(x,G,x,I)dx=G(x,t,x,r). (36)
0

A comparison between Egs. (35) and (36) shows that G(x, ¢, x', 1) = Glx, t, x, 7).

Thus, the function G(x, ¢ x', T) can be found as a solution of equivalent probiems for Egs. (17) and (29)
with the above boundary conditions (initial and boundary), and in regions with moving boundaries the equivalence
is not retained in the boundary conditions in statements of problems with respect to (x, ) and (x', 1), unlike in
classical cylindrical regions. This circumstance caused errors in a number of works on the construction of Green
functions for boundary-value problems of unsteady heat transfer in regions with moving boundaries; this fact
prompted the author to prepare the present publication.
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2. Method of Integral Equations in Constructing a Green Function in a Region with a Uniformly Moving
Boundary. Any case of finding a Green function of a corresponding boundary-value problem for a region with a
moving boundary is of exceptional importance, since it contains extensive information about analytical solutions on
the basis of integral relations (26)-(28). "

Let us next consider a modification of the method of thermal potentials ( mcthod of integral equations) for
constructing Green functions in a region with a uniformly moving boundary [0, [ + v/ |, 1 = 0 that is of interest for
numerous applications, such as thermomechanics [4] and physics of strength [5]. Below we propose an approach
that leads to analytical solutions in a new (simplest) integral form different from those known ecarlier for this case
obtained by a different method. For brevity we consider the first boundary-value problem:

. 2
-d—q=a%,0<x<l+vt,t>r; 37
ot ox

G|,=,=6(x—-x’),0<x<l+vr;G|X=0=G|x=,+w=0, 1>1. (38)

Now we pass to the function ¢(x, ¢ x’, ) by means of Eq. (16), whence, using Egs. (37) and (38), we have:

9 8 C
*—,=a—~—%,0<x<10+vl,t>0; (39)
ot dx
qlt':():Og 0<x< 10; (40)
2
1 X ’
Glyepg=————=cxp |- |, 1t >0; (41)
* 2V nat' 4at
Uy + v — x)°
0 - ’
@l pmggrve = = ——exp |- I s, (42)
2V xat’ 4at
Here ¢ =t — ; lo =1 + vt. A solution of problem (39)-(42) is sought in the form of a sum of potentials
' 2
, Va L W X
(I(xvtvxv-[)z a ]()ex - T Ll'[+
2Vn o Vi —1 4a(t — 1)
' 2
Va 1. ¥, X —ly—wvr
¢ 2@ p |- E 2D (43)

+ Xp ,
2Vr o Vi -1 da (1 — 1)

where W) (tYand W, (¢') are the unknown potential densities to be determined. Expression (43) will be written in
the space of Laplace transform

— Ly — —
g = 2\/‘/25 exp [— —)fa—\/};] ¥ (p) + 2\/3; exp [— ()\/;x \/;] W, (Vp + ", (44)

where y = v/2Va; W3(t) = Wy(f)exp (yzt'). Thus, hereafter to find the original g from Eq. (44), it is necessary to
seek transforms of the unknown densities in Eq. (43) relative to W, (p) and W3|(Vp + »2y.

Satisfying boundary conditions (41)-(42) in Eq. (43), we obtain a system of Volterra integral equations in
W) and W3(£):
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Va ' ¥ () Va . ¥3() 10 + 2yt + v 22t
il dr + f exp
2Vn o Vi -« 2Vr o Vi -1 da (1 - 1) Y m’
Va L W, (@) I+ 2yt + V'rt Va L Wi()
f exp | — ; f . dr =
2Vx 0 Vi -1 4a(t — 1) 2Vn o Vi -1
’ 2 '
1 (lo—x) (lg—x)v
= exp | — - -
2 Vrat' 4at 24
In the transform space the system of integral equations takes the form:
W, (p) + exp ) p| W, (Vp + y)2 _ ! exp u Vp
1 - = 3 =-- — )
Va a Va
10 ] — 2 _ l 10 - x’
exp | = —=(Vp +7)| B, (VP +7)" + W3 (p) = — —exp | - Vp +7v)
Va a Va

Elimination first of W3(p)and then of ¥, (p) from the system of functional equations (47) yields:

<

p (p) =

a

“ o+ )
(¢ _— y
P \/__P 4 -

{
T, (Vp +2)° — exp [FO vp

N

a

=—l‘exp _hox Vp +2) “CXP[—ZO_x \/;)}»
exp | = —= (Vp + )| B (V5 + 20" — exp |-= (Vp + ) Wé(/}>=
va Va

Va

=—l{exp[——x—(\/;+y)}—exp (\/5+y)]~
a
We let:

T, () =4, (p); Vs (p°) = A3 (p)

and rewrite Eqs. (48) and (49) in the following form:

d

1 x 2(10—x,) 210-x’
=——lexp|—p—————y| —exXp|{——p|;

20,07 0+ 0, 3, »
exp |— — g —exp |— =
p \/_.)’ 1 U Y p \/EP 1 \P

Va

21"1Z<+2> %o | 4,
€X l— — X — =
p VQ;V 3P+ 2y p viil) 3 (P

(46)

(47)

(48)

(49)

(50)

(51)
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1 I, — x I+ x I+ x I — x
— — |exp 0 p— 0 y| — exp 0 p— 0 Y. (52)
a Va Va Va Va

By means of substitution

,,2) Bi(p) (i=1;3) (53)

— /
A4;(p) = exp
2 /

ay

equations (51) and (52) are reduced to equations with constant coefficients:

_ _ I o 2
By (p+2) — B (p)=——exp |- p|X
a 2\/a—y
20 — x 20y — x x
x {exp | — 0 p—- (o )y —exp | — Pt (54)
Va Va Va

_ — 1 ly -
By (p + 2y) — B3 (p) = — —exp -3 pT| X

a Vay
10+x' lo_x,
X Jexp | - N (p+y)| —exp |- N @+9|¢- (335)
a a

It can be directly verified that the function I_’(p) = -3 E(p + bn) [6]is a desired particular solution of the functional
n=0

— —— — o0
equation F(p + & — F(p) = C(p), provided that this scries converges. But a series of the type of £ exp
n=0

[—Up/2Vay) (p + 2yn)2 ~d(n, p) | (where d(n, p) > 0 are linear functions with respect to n), to which the soiutions
of Egs. (54) and (55) are reduced, converges because (/p/2Vay) > 0. Thus, the following functions will be solutions
of Egs. (54) and (85):

_ 1 = l
B, (p) =; Eo exp [— 2\/0_ (p + 2yn)2} X
n= ay

2y — x 2y — x X
X sexp | — 0\/_— (p + 2yn) — —-—(—0\/~_——)y —exp |- 7_—— (r+ 2yn)] ; (56)
a a a

_ ] = l 2
B (p) =— 2 exp | — 0 {(p+ 2yn) | x
a n=0 2\/211

+ x, Iy — x'
P+ 2n+ 1)yt —exp
a a

X {exp | — o P+ 2n+ D)y, (57)

Knowing Ei(p), we first find ~/ii(p) from Eq. (533) and then, with allowance for Eq. (50), the desired potential
densities relative to the transforms that enter into Eq. (44):

°° 2 AUg(n+ 1) — x

_ 1 ,
lIM(P):—E:Oexp —'%(n+1)|(n+1)10—x|— 7 Vpl -
a n= a .
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1 = 2y 2 2yxl 210n+xl
—— > exp |- n -

n— Vp |, (58)
a n=0 va Va Va
- 1 2 2gy . yx Qn+ 1)l + x
U, (Vp +7) =~ e USRS I s AP g 0 -
s A= Zoew = 2t =T m et D Va
1 & 2y : (2n + 1)y — '3
- i+ )+ Dy — x|~ 59
2P T DI D Va &

Substituting Egs. (58) and (59) into Eq. (44) and passing to the space of original functions, we determine, with
allowance for Eq. (16), the desired Green function G(x, ¢, x', 7):

' 1 n=+ow 21 2 '
G(x,t,x,1)=———— 2 exp ____(an_ )/xn y
Wra o) ne Vi
(2lyn + x x)2 (2Uyn + X 4 v)z \
] - 0 g
x exp - 4a (l - T) —€Xp | — 4[1 (l _ T) va (60)

where Iy = [ + vr; y = v/2Va. Analyzing the expression obtained, we combine the cxponentials that contain n? in
the exponent. Then under the sign of the series the factor exp [—lonz(l + vi)/a(t — 1) | appears. From this it follows
that series (60) converges also for negative values of v provided that v <t < —(//v). But when 1= —1/v (v < 0),
the prescribed region disappears. Consequently, expression (60) can be used for any values of v.

‘ Now, using Eq. (26), it is possible 1o write an integral representation of the analytical solution of first
boundary-value problem (11)-(13) in terms of Green function (60):

{ ) ) , !
T(x,8)=f Py (x)G(x, 1, x,0)dx +af<p1(r)99, dr —
0 0 ax | x'=0
t oG i l+w , , ,
—af<p2(r)——,— dr+f f F(x. DG (x, 1, x,7) drdx . ' (61)
0 IxX | x'=l+w 0 0

When ®g(x) =0, f(x, ) =0, expression (61) takes the form

4

1 n=de ! X+ 2n (I + vi) v{1+vr!n.2
T(x,0) = > J p; () exp { — -
2Var n=-w 0 (1—1)3/2

_[x+2n(l+v5)h12 PR I L x+ Qu+ D)+ v
4a (t—T) } ‘ 2\/—5 n=z—co {; (t—T)S/Z 2 (r)x
2
Xexp{—z—(l—ziln(n+ N - lx+(2Za-?tD—_(tl)+ vr) | ]}dz, (62)

thus representing an integral relation of the new form for the first boundary-value problem of nonstationary thermal
conductivity in the region of [0, [+ vt], ¢t = 0. Expression (62) has an interesting continuation. We pass in Eq.
(62) to the space of transforms (following Laplace)

T (x, p) = $; (p) exp [— —\/%—\/;] + %p g] exp [~ %nz) (Vp + 2yn) ¥
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N

X [exp [— 2n + x \/17) — exp [— 21’;: * \/;” 2, (Vo + 2n)1 +
a

+-‘71_; n°=°0 exp {—%n(n+l)J IVp + (2n + Dyix

a
% {exp [_@L\/LM\/;} ~ exp [_ Mﬁ}}% VP + @+ nl, (63)
a a

where @3(0) = pa(f) exp (yzt). Expression (63) can be a working formula for writing analytical solutions (in
transforms) of first boundary-value problem (11)-(13) (when f= ®y = 0) in the region of [0, / + vt], =0 fora
wide class of boundary functions (homogeneous, impuise, pulsating, periodic, etc.). From this expression-it is also
possible to obtain immediately a representation for the Green function, if one takes into account that in this case
p1(1) and p,(r) are well-known functions (41) and (42). The practical usefulness of expression (63) lies in the fact
that with the prescribed boundary functions the direct passage to the original functions in Eq. (63) eliminates
prolonged intermediate calculations, as for instance, in passage from Eq. (61) to Eq. (62) (it is clear that relation
(63) could be also obtained immediately by the previous reasoning on the basis of Eq. (43), so this is one of the
approaches). However, with inhomogeneities present in Egs. (11) and (12), thc Green function method is
irreplaceable.

We illustrate the suggested considerations for the region of x = [ + v, ¢ = 0, where the above-stated
approach (on the basis of Eq. (63)) becomes especially effective. Let T(x, #) be a solution of the problem:

2
§I=a§—€, x>1+vt, 1>0; (64)
ot ax
T 0|,g=0, x21(; (65)
(ﬂlg—T+ﬂzT) =Pap (), 120; (66)
X x={+vt
IT(x, )] <+o, x=l+vt, t=0, (67)

where 31 = 0, 82 = B3 = 1 in the case of the first boundary-value problem; 3, = 0, 8; = 83 = 1 in the case of the
second boundary-value problem; §; = |, B2 = 83 = —h (& is the relative coefficient of heat transfer) in the case of
the third boundary-value problem. The function T(x, ) is sought in the form of the generalized thermal potential
of a simple layer using the curve x =/ + vt

T (1) = Va L I B S '

- (68)
2V o Vi—1 da(t — 1)

where W(?) is the unknown potential density to be found from boundary condition (66). In the space of Laplace
transforms expression (68) has the form

T (x,p) =

Va x—1 — v
_ v ] LAY , (69)
2Vp P [ Va p] [p Va p]

from which the operational form of the unknown density follows. Repeating the above reasoning, we find the
following base relation for operational solution of boundary-value problem (64)-(67):
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T (x,p) =0 (p)

l—ﬂ]exp[—x_lﬁ]s?(p— v\/;], (70)

p/a Va Va
where
1 for the first boundary-value problem ;
B =1— 1/V p/a for the second boundary-value probiem ;
S S— for the third boundary-value problcm
A+ Vp/a

Passing to the space of original functions by means of well-known rules of operational calculus |7], we
obtain integral relations in a very compact form. As, for example, in the case of the first boundary-value problem:

2
(t) exp N C el S dt .

da(t — 1)

x—=({U+w)
3z

(t-7)

T(x,1) = _(}:

In order to find an analytical solution of the inhomogeneous heat conduction equation with the inhomogeneous
initial condition

2
a—T=a—0—-§+f(x,z),x>l+vt, >0 (71)

at ax
Tx )|jmg=Py(x), x=1, (72)

and boundary conditions (66) and (67), it is necessary first to construct the corresponding Green function G(x, f{,
X', 7). By means of expression (70) we can do it with minimal calculations. Actually, according to Eq. (16), in the
case of the third boundary-value probiem for the function ¢(x, 7, x', 1) we have:

8 y o
—7=ai—(é,x>lo+vt,t>0; (73)
at dx
G 1, X, Dlpg=0, x>l; (74)
I I + 5 2
aq (x = ly) — (v + 2ah)t (gt vt —x) )
— =h q|x=10+vf - 373 exp |- ————————|:, t >0; (75)
9x | x=lg+vt' 4h\/7?(at) 4at
}q(x,t',x',z)f<+oo, x210+vl’, 1'20, (76)

where lo =1+ vr; £ =1 — 1. Now, in accordance with approach (70) we separate out the function ¢ (¢') in boundary
condition (75):

(x = ly) = (v + 2ah) { Uy + vi — x)’
exp | ~ ———————

p (1) = : ,
anvVr (a)’? dat

bl

find its representation in the form indicated in Eq. (70):
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— 1% \/— 72— l \/— v ’
¢[p—“5 ,,]_ zah(v;-—l—] L YR
2Va

Vp - |2 +h\/§)

and then, using Eq. (70), we pass to the representation for g(x, p, x', 7)

Vp — |~ +hnVa
| X+ x = 2

‘ Vv d (77)
S —. ) —(x — 1 .
2Va Vp (Vp +hVa) P Va p+a(v o

q =

Resorting to the original functions in Eq. (77) and taking into account Eq. (16), we determine the Green function
for the third boundary-value problem in the region of x >/ + vt, t > 0O:

2
G(x,t,x,r):..._____l___ exp __ix;ﬁ_l_ +
2Vrma(t—1) 4a (t - 7)

_Grx -20+w)’ v
4a(t —7) a

+ exp

(x — (1 + v)) } -

_ (h+l) exp{1x+x'—2(1+w)|h+ah2(z—r)+§|x'—(1+w)]}><

2a
X(D*{x-f-x-‘2(1+Vﬂ+h,/a(t_.[)J’ ‘ (78)
2Va(t-r1)

V4
where ®*(z) =1 — ®(2); P(2) = 2/Va) [ exp (—y*)dy of the Laplace function. Assuming that in Eq. (77) h =0,
0

we find the Green function for the second boundary-value problem

1 lexp - +
2Vra(t — 1) 4a (1 — 1)

G(x, ¢, x', T) =

_Q+x'—2(1+w)ﬁ+3(xf_(1+w)) |

+ exp -
da (1 — 1) a J
v v * x+x'—2(1+vr)
——exp|—(x —(+wv))| P . (79
2a {a 2Va(t—1)
The limit passage with (1/h) - 0 in Eq. (77) leads to the Green function for the first boundary-vatue problem
"2
G(x,t,x,r)z_.___.l____ exp _ML -
2Vma(t - 1) 4a (t - 1)
(x+x =2+ w))° : |
—exp | — + 2 =+t (80)
da (1 — 1) a J

The integral representation of the analytical solution of problem (71), (72), (66, (67) has the form of
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T(x,0)=f ®y(x)G(x,1x,0)dx +
{

£ o , , .
p@dr+f [ f(x,7)G(x, 1, x,1)drdx , (81)

xX'=l+v 0 [+wr

t
aG
0 0x

where y; = 1, y2 = 0 in the case of the first boundary-value problem; y; = 0, y2 = I in the case of the second
boundary-value problem; y; = 0, y» = —# in the case of the third boundary-value problem.

For different boundary conditions the specific features of the method for the region of Q; = {x € [0, y(» ],
t =2 0} consist only in solving a finite difference equation and in passing to an original. This method can be extended
to other regions and laws of boundary motion. Although the approach given here concerns boundary-value problems
for Egs. (64) and (71), it is also possible to consider equations of the following form

_a(% = aAT (M, 1) - BT (M, 1) + vgrad T (M, £) + F (M, 1), (82)
since by substitution
T(M, 1)=U(M,i)exp |-t v— B+ }3: v 1 (83)
’ ’ 2a da & LT

(here M = M(xy, x2, x3), Vv =wji + vpj + v3k (v; = const), b = const, r = xji + xj + x3k) Eq. (83) is reduced to
the case

%=aAU(M, n+ WM, 1),

where W(M, 1) is the new (known) function.
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